Abstract
Glycidol is a well-known food contaminant mainly formed in refined edible oils and various thermally processed foods. Here, we studied the toxicity effects and related mechanism of glycidol on Human umbilical vein endothelial cells (HUVECs). Glycidol was found to induce Gap period 2 (G2)/Mitosis (M) phase cell cycle arrest, apoptosis, and autophagy in HUVECs. Inhibition of autophagy by 3-methyladenine (3-MA) attenuated glycidol-induced cell death, suggesting that glycidol-induced apoptosis was autophagy-dependent. Moreover, glycidol treatment induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal protein kinase (JNK), and p38. Inhibition of ERK, JNK, and p38 phosphorylation by the inhibitors U0126, SP600125, and SB203580 attenuated glycidol-induced autophagy and prevented glycidol-mediated reduction in cell viability, demonstrating that glycidol inhibited HUVECs growth by inducing autophagic-dependent apoptosis through activation of the ERK, JNK and p38 signaling pathways. In addition, apigenin (API) and its octoic acid diester apigenin-7 (API-C8), 4′-O-dioctanoate were found to significantly attenuate glycidol-induced cell growth inhibition by inhibiting the above signaling pathways. Collectively, glycidol induces autophagic-dependent apoptosis via activating the ERK/JNK/p38 signaling pathways in HUVECs and API-C8 could attenuate the toxicity effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.