Abstract

This study investigated the inhibitory potential of a series of synthesized compounds (L1-L27) on α-glucosidase. Among them, compound L22 showed significant inhibitory effect. Through enzymatic kinetics studies, we demonstrated that L22 acts via a non-competitive inhibition mode with a Ki value of 2.61 μM, highlighting its high affinity for the enzyme. Molecular docking studies revealed the formation of hydrogen bonds between L22 and α-glucosidase and diverse interactions with neighboring amino acid residues. Furthermore, molecular dynamics simulations confirmed the stability of the L22-α-glucosidase complex. In a mouse model of type 2 diabetes, treatment with L22 significantly lowered fasting blood glucose levels, and reduced insulin resistance, suggesting its potential as a therapeutic agent for type 2 diabetes. Furthermore, L22 showed a protective effect against oxidative stress in the liver and alleviated liver and pancreatic abnormalities. These results provide valuable insights into the mechanism of action of L22 and its potential applications to treat type 2 diabetes, and improve liver health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.