Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. Apigenin was widely used in HCC treatment; however, the detailed mechanisms have not been clarified. We isolated, characterized, and identified Apigenin from the P. villosa plant using ethanol-extracted, semi-preparative HPLC and NMR. MTT was used to detect the cytotoxicity of Apigenin in HepG2, SMMC-7721 and Huh-7 cell lines. The cell cycle changes of Apigenin on HepG2 using flow cytometry and the key molecules of cell cycle regulation by RT-qPCR and Western blot. Apigenin was ethanol-extracted and semi-preparative HPLC was used for isolation and purification. The compounds were identified and the results showed Apigenin was one of the bioactive compounds. Apigenin exhibited relatively high cytotoxicity in HepG2, SMMC-7721, and Huh-7. Cell cycle analysis showed that Apigenin could induce G1 arrest in HepG2 in a dose-dependent manner. CyclinD1 was up-regulated and CDK4 was down-regulated upon Apigenin treatment, which indicated that Apigenin could block cell cycle progression at the G1 phase though the regulation of CDK4 and CyclinD1 expression. In conclusion, the present findings might provide new insights about the implication of Apigenin and P. villosa in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.