Abstract
Alternative splicing of the first intracellular loop differentially targets plasma membrane calcium ATPase (PMCA) isoform 2 to the apical or basolateral membrane in MDCK cells. To determine if the targeting is affected by lipid interactions, we stably expressed PMCA2w/b and PMCA2z/b in MDCK cells, and analyzed the PMCA distribution by confocal fluorescence microscopy and membrane fractionation. PMCA2w/b showed clear apical and lateral distribution, whereas PMCA2z/b was mainly localized to the basolateral membrane. A significant fraction of PMCA2w/b partitioned into low-density membranes associated with lipid rafts. Depletion of membrane cholesterol by methyl-β-cyclodextrin resulted in reduced lipid raft association and a striking loss of PMCA2w/b from the apical membrane, whereas the lateral localization of PMCA2z/b remained unchanged. Our data indicate that alternative splicing differentially affects the lipid interactions of PMCA2w/b and PMCA2z/b and that the apical localization of PMCA2w/b is lipid raft-dependent and sensitive to cholesterol depletion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.