Abstract
Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.