Abstract

Summary A mesh refinement method is described for solving a continuous-time optimal control problem using collocation at Legendre–Gauss–Radau points. The method allows for changes in both the number of mesh intervals and the degree of the approximating polynomial within a mesh interval. First, a relative error estimate is derived based on the difference between the Lagrange polynomial approximation of the state and a Legendre–Gauss–Radau quadrature integration of the dynamics within a mesh interval. The derived relative error estimate is then used to decide if the degree of the approximating polynomial within a mesh should be increased or if the mesh interval should be divided into subintervals. The degree of the approximating polynomial within a mesh interval is increased if the polynomial degree estimated by the method remains below a maximum allowable degree. Otherwise, the mesh interval is divided into subintervals. The process of refining the mesh is repeated until a specified relative error tolerance is met. Three examples highlight various features of the method and show that the approach is more computationally efficient and produces significantly smaller mesh sizes for a given accuracy tolerance when compared with fixed-order methods. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.