Abstract

Aphids, the major insect pests of agricultural crops, reproduce sexually and asexually depending upon environmental factors such as the photoperiod and temperature. Nuclear receptors, a unique family of ligand-dependent transcription factors, control insect development and growth including morphogenesis, molting, and metamorphosis. However, the structural features and biological functions of the aphid estrogen-related receptor (ERR) are largely unknown. Here, we cloned full-length cDNA encoding the ERR in the green peach aphid, Myzus persicae, (Sulzer) (Hemiptera: Aphididae) (MpERR) and demonstrated that the MpERR modulated glycolytic gene expression and aphid fecundity. The phylogenetic analysis revealed that the MpERR originated in a unique evolutionary lineage distinct from those of hemipteran insects. Moreover, the AF-2 domain of the MpERR conferred nuclear localization and transcriptional activity. The overexpression of the MpERR significantly upregulated the gene expression of rate-limiting enzymes involved in glycolysis such as phosphofructokinase and pyruvate kinase by directly binding to ERR-response elements in their promoters. Moreover, ERR-deficient viviparous female aphids showed decreased glycolytic gene expression and produced fewer offspring. These results suggest that the aphid ERR plays a pivotal role in glycolytic transcriptional control and fecundity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call