Abstract

NGC 1333 IRAS 4A and IRAS 4B sources are among the best studied Stage 0 low-mass protostars which are driving prominent bipolar outflows. Most studies have so far concentrated on the colder parts (T<30K) of these regions. The aim is to characterize the warmer parts of the protostellar envelope in order to quantify the feedback of the protostars on their surroundings in terms of shocks, UV heating, photodissociation and outflow dispersal. Fully sampled large scale maps of the region were obtained; APEX-CHAMP+ was used for 12CO 6-5, 13CO 6-5 and [CI] 2-1, and JCMT-HARP-B for 12CO 3-2 emissions. Complementary Herschel-HIFI and ground-based lines of CO and its isotopologs, from 1-0 upto 10-9 (Eu/k 300K), are collected at the source positions. Radiative-transfer models of the dust and lines are used to determine temperatures and masses of the outflowing and UV-heated gas and infer the CO abundance structure. Broad CO emission line profiles trace entrained shocked gas along the outflow walls, with typical temperatures of ~100K. At other positions surrounding the outflow and the protostar, the 6-5 line profiles are narrow indicating UV excitation. The narrow 13CO 6-5 data directly reveal the UV heated gas distribution for the first time. The amount of UV-heated and outflowing gas are found to be comparable from the 12CO and 13CO 6-5 maps, implying that UV photons can affect the gas as much as the outflows. Weak [CI] emission throughout the region indicates a lack of CO dissociating photons. Modeling of the C18O lines indicates the necessity of a "drop" abundance profile throughout the envelope where the CO freezes out and is reloaded back into the gas phase, thus providing quantitative evidence for the CO ice evaporation zone around the protostars. The inner abundances are less than the canonical value of CO/H_2=2.7x10^-4, indicating some processing of CO into other species on the grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.