Abstract

Variability in soil landscapes and their associated properties can have significant effects on erosion and deposition processes that affect runoff and transport of pesticides. Simulation models are one way in which the effects of landscapes on these processes can be assessed. This simulation study evaluated the effects of variations in landscape position on runoff and dissolved atrazine utilizing a calibrated farm- and field-scale Agricultural Policy/Environmental eXtender (APEX) model. Twelve agricultural plots (18 m × 189 m) in the Goodwater Creek watershed, a 7250 ha agricultural area in north-central Missouri, were simulated. Plots were treated with three tillage and herbicide management systems for two grain crop rotations. Each plot contained three landscape positions (summit, backslope, and footslope) along with two transition zones. Runoff was measured and samples were collected from 1997 to 2002 during the corn year of the crop rotations. Runoff samples were analyzed for dissolved atrazine. The model was calibrated and validated for each plot with event data from 1997 to 1999 and from 2000 to 2002, respectively. APEX reasonably simulated runoff and dissolved atrazine concentrations, with coefficients of determination (r2) values ranging from 0.52 to 0.98 and from 0.52 to 0.97, and Nash-Sutcliffe efficiency (NSE) values ranging from 0.46 to 0.94 and from 0.45 to 0.86 for calibration and validation, respectively. The calibrated model was then used to simulate variable sequencing of landscape positions and associated soil properties as well as variable lengths of landscape positions. Simulated results indicated that the runoff and the atrazine load at the plot outlet increased when the backslope length increased while keeping the steepness constant. The maximum simulated runoff among different sequences of landscape positions occurred when the backslope position was located adjacent to the outlet. Results from this study will be helpful to managers in placement of conservation practices on sensitive landscapes for improvement in water quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.