Abstract

This work focuses on the numerical modelling of confined concretes when subjected to multiaxial loading accounting for a nonlinear material response. Particularly, an improved return mapping procedure is presented to cope with the issue of singularities (corners) in the yield surface, able to catch locally the optimal return point on the active yield surface. The algorithm is applied to the Menétry and Willam’s yield surface, with a plastic potential as suggested by Grassl and the softening law proposed by Cervenka suitable for concrete materials. The model capabilities to reproduce the confined behaviour of concrete, as well as its post-peak behaviour, and to predict perfect plasticity or softening are here discussed. The proposed approach can be applied to any elastoplastic material with singular yield surface along the hydrostatic axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.