Abstract

The human brain exhibits both oscillatory and aperiodic, or 1/f, activity. Although a large body of research has focused on the relationship between brain rhythms and sensory processes, aperiodic activity has often been overlooked as functionally irrelevant. Prompted by recent findings linking aperiodic activity to the balance between neural excitation and inhibition, we investigated its effects on the temporal resolution of perception. We recorded electroencephalography (EEG) from participants (both sexes) during the resting state and a task in which they detected the presence of two flashes separated by variable interstimulus intervals. Two-flash discrimination accuracy typically follows a sigmoid function whose steepness reflects perceptual variability or inconsistent integration/segregation of the stimuli. We found that individual differences in the steepness of the psychometric function correlated with EEG aperiodic exponents over posterior scalp sites. In other words, participants with flatter EEG spectra (i.e., greater neural excitation) exhibited increased sensory noise, resulting in shallower psychometric curves. Our finding suggests that aperiodic EEG is linked to sensory integration processes usually attributed to the rhythmic inhibition of neural oscillations. Overall, this correspondence between aperiodic neural excitation and behavioral measures of sensory noise provides a more comprehensive explanation of the relationship between brain activity and sensory integration and represents an important extension to theories of how the brain samples sensory input over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.