Abstract

Apelin, the endogenous ligand of the G protein-coupled APJ receptor, is a peptide mediator with emerging regulatory actions in the heart. We aimed to determine whether the endogenous apelin/APJ system is an intrinsic protective pathway in ischemic/reperfusion injury. A Langendorff model of perfused isolated rat hearts and primary cultured myocardial cells from neonatal rats were used. Cardiac function was monitored and apelin/APJ expression was determined by real-time PCR and Western blot analysis. In rats under I/R, cardiac function was significantly decreased as compared with controls, and APJ was over-expressed at both the mRNA and protein levels (by 7-fold and 35%, respectively, both p < 0.01). However, pre-administration of apelin (30 pmol/L) greatly ameliorated the reduced heart function. To gain mechanistic insight into the cardio-protective effects of apelin/APJ, cultured cardiomyocytes were treated with apelin (30 pmol/L), and those under hypoxia/re-oxygenation showed H/R-induced apoptosis and up-regulated apelin/APJ mRNA expression by 6-fold and 7-fold, respectively (both p < 0.01). And lactate dehydrogenase leakage was greatly increased as well. Meanwhile, apoptosis, the generation of reactive oxygen species and malonaldehyde content as well as lactate dehydrogenase leakage were inhibited by apelin. Furthermore, apelin enhanced superoxide dismutase activity and phosphorylation of extracellular signal-regulated kinase 1/2 and Akt after hypoxia/re-oxygenation. In conclusion, apelin/APJ has protective effects in ischemic heart disease and might constitute an important therapy target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call