Abstract

Osteoporosis is characterized by impaired bone metabolism. Current estimates show that it affects millions of people worldwide and causes a serious socioeconomic burden. Mitophagy plays key roles in bone marrow mesenchymal stem cells (BMSCs) osteoblastic differentiation, mineralization, and survival. Apelin is an endogenous adipokine that participates in bone homeostasis. This study was performed to determine the role of Apelin in the osteoporosis process and whether it affects mitophagy, survival, and osteogenic capacity of BMSCs in in vitro and in vivo models of osteoporosis. Our results demonstrated that Apelin was down-regulated in ovariectomized-induced osteoporosis rats and Apelin-13 treatment activated mitophagy in BMSCs, ameliorating oxidative stress and thereby reviving osteogenic function via AMPK-α phosphorylation. Besides, Apelin-13 administration restored bone mass and microstructure as well as reinstated mitophagy, enhanced osteogenic function in OVX rats. Collectively, our findings reveal the intrinsic mechanisms underlying Apelin-13 regulation in BMSCs and its potential therapeutic values in the treatment of osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call