Abstract

Chronic stress induces neuronal death and impairs hippocampal neurogenesis, thus leading to cognitive deficits and depressive-like behaviors. Our previous studies found that apelin-13, a novel neuropeptide, and its receptors can improve cognitive impairment and depressive-like behaviors in rats, but its mechanism remains unknown. The study aims to evaluate the underlying mechanism of apelin-13 on cognitive impairment and depressive-like behaviors. A 4-week chronic unpredictable mild stress (CUMS) is used to establish a rat model of depression. Apelin-13(2 ug/day) is administered daily to the rats during the last 1 week. Depressive-like behaviors, including tail suspension test (TST) and sucrose preference test (SPT), are performed. The cognitive functions are established by identify index of novel objects recognition test (NORT) and the number of crossing hidden platform in morris water maze (MWM). The neuronal death is measured by popidium iodide (PI) and flow cytometry. The activity of superoxide dismutase (SOD) and glutathione-peroxidase (GSH-PX) in the hippocampus are determined. The protein expressions of p-AMPK, AMPK, BDNF, FNDC5 and PGC-1α are examined. Golgi staining observed the spine dendritic arborization of the hippocampal cornu ammonis 1 (CA1) subregion. Results showed that apelin-13 improves cognitive impairment and ameliorates depressive-like behaviors. Moreover, apelin-13 significantly inhibits neuronal death via AMPK/PGC-1α/FNDC5/BDNF pathway. Taken together, apelin-13 could exert antidepressant effects via protecting neuron functions, which might be related to the activation of AMPK/PGC-1α/FNDC5/BDNF pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call