Abstract

The teratomas formation has severely hindered the application of embryonic stem cells (ESCs) in clinical trials. Apurinic/apyrimidinic endonuclease 1 (APE1) is strongly involved in the development of tumors and differentiation process of stem cells. However, the role of APE1 in teratomas remains unknown. The expression of APE1 was examined in mouse ESCs (mESCs) by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. The role and mechanism of APE1 in the proliferation, pluripotency and differentiation of E14 cells were determined by cell counting, flow cytometry and western blot assays. Besides, the role of APE1 in teratomas was also probed in xenografted mice. The expression of APE1 was upregulated in mESCs with differentiation. Knockdown of APE1 reduced the cell numbers, induced the arrest of the G2/M phase, and decreased the expression of cell cycle-related proteins in E14 cells. Besides, loss- and gain-of-function assays revealed that APE1 enhanced the levels of proteins involved in pluripotency, reduced the protein expression of ectoderm markers, and increased the protein levels of endoderm markers in E14 cells. Mechanically, inhibition of APE1 downregulated the expression of GDNF and GFRα1 in E14 cells. GDNF reversed the role of APE1 in the proliferation, pluripotency and embryogenesis of E14 cells. Moreover, suppression of APE1 reduced the teratoma volume and the relative protein expression of endoderm markers, but increased the relative protein expression of ectoderm markers in xenografted mice. Collectively, knockdown of APE1 attenuated proliferation, pluripotency and embryogenesis of mESCs via GDNF/GFRα1 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call