Abstract
BackgroundAlternative polyadenylation (APA) affects most human genes and is recurrently dysregulated in all studied cancers. However, the mechanistic origins of this dysregulation are incompletely understood.ResultsWe describe an unbiased analysis of molecular regulators of poly(A) site selection across The Cancer Genome Atlas and identify that colorectal adenocarcinoma is an outlier relative to all other cancer subtypes. This distinction arises from the frequent presence of loss-of-function APC mutations in colorectal adenocarcinoma, which are strongly associated with long 3′ UTR expression relative to tumors lacking APC mutations. APC knockout similarly dysregulates APA in human colon organoids. By mining previously published APC eCLIP data, we show that APC preferentially binds G- and C-rich motifs just upstream of proximal poly(A) sites. Lastly, we find that reduced APC expression is associated with APA dysregulation in tumor types lacking recurrent APC mutations.ConclusionsAs APC has been previously identified as an RNA-binding protein that preferentially binds 3′ UTRs during mouse neurogenesis, our results suggest that APC promotes proximal poly(A) site use and that APC loss and altered expression contribute to pervasive APA dysregulation in cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.