Abstract
Cell remodeling relies on dynamic rearrangements of cell contacts powered by the actin cytoskeleton. The tumor suppressor adenomatous polyposis coli (APC) nucleate actin filaments (F-actin) and localizes at cell junctions. Whether APC-driven actin nucleation acts in cell junction remodeling remains unknown. By combining bioimaging and genetic tools with artificial intelligence algorithms applied to colorectal cancer cell, we found that the APC-dependent actin pool contributes to sustaining levels of F-actin, as well as E-cadherin and occludin protein levels at cell junctions. Moreover, this activity preserved cell junction length and angle, as well as vertex motion and integrity. Loss of this F-actin pool led to larger cells with slow and random cell movement within a sheet. Our findings suggest that APC-driven actin nucleation promotes cell junction integrity and dynamics to facilitate collective cell remodeling and motility. This offers a new perspective to explore the relevance of APC-driven cytoskeletal function in gut morphogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.