Abstract
ABSTRACTSporadic colorectal cancer initiates with mutations in APC or its degradation target β-catenin, producing TCF-dependent nuclear transcription driving tumorigenesis. The intestinal epithelial receptor, GUCY2C, with its canonical paracrine hormone guanylin, regulates homeostatic signaling along the crypt-surface axis opposing tumorigenesis. Here, we reveal that expression of the guanylin hormone, but not the GUCY2C receptor, is lost at the earliest stages of transformation in APC-dependent tumors in humans and mice. Hormone loss, which silences GUCY2C signaling, reflects transcriptional repression mediated by mutant APC-β-catenin-TCF programs in the nucleus. These studies support a pathophysiological model of intestinal tumorigenesis in which mutant APC-β-catenin-TCF transcriptional regulation eliminates guanylin expression at tumor initiation, silencing GUCY2C signaling which, in turn, dysregulates intestinal homeostatic mechanisms contributing to tumor progression. They expand the mechanistic paradigm for colorectal cancer from a disease of irreversible mutations in APC and β-catenin to one of guanylin hormone loss whose replacement, and reconstitution of GUCY2C signaling, could prevent tumorigenesis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.