Abstract

Recent re-analyses of lunar samples have undoubtedly measured indigenous water, challenging the paradigm of a “dry” Moon, and arguing that some portions of the lunar interior are as wet as some regions of the Earth’s mantle and that water in both planetary bodies likely share a common origin. Mare basalts indirectly sample the lunar mantle and are affected by petrogenetic processes such as crystallization and degassing that can modify characteristics of indigenous water in primary mantle melts. Analyses of apatite in phosphorus-rich KREEP (K + REE [rare earth elements] + P) basalts may provide more reliable estimates for the water content of lunar magmas, as some apatites likely crystallized before substantial degassing occurred. In lunar KREEP basalt sample 15386, apatite H 2 O content and H isotopic composition suggest that degassing occurred during apatite crystallization, the lowest δD value of 90‰ ± 100‰ representing an upper limit for the isotopic composition of water in the parental magma. Interpretation of the data for KREEP basalt 15386 suggests that this basalt is characterized by relatively elevated H 2 O contents and CI chondrite–type δD values, similar to those proposed for other mare basalts and pyroclastic glasses. On the other hand, most of the apatites in lunar KREEP basalt 72275 and lunar meteorite NWA 773 crystallized before degassing and H isotope fractionation, and their D/H ratios thus directly refl ect those of their source regions. These apatites have an average δD value of –130‰ ± 50‰, suggesting the presence of a water reservoir in the Moon characterized by moderate H 2 O contents and H isotopic composition similar to that of Earth’s interior. These fi ndings imply that signifi cant amounts of water in the Moon were inherited from the proto-Earth, surviving the purported Moon-forming impact event.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call