Abstract

In situ apatite U-Pb petrochronology and Sr-Nd isotope geochemistry requires well-characterized and matrix-matched references materials (RMs), yet only a few suitable apatite RMs are currently available. To ameliorate this issue, we determined the U-Pb, Sm-Nd, and Sr isotopic and elemental compositions of a suite of prospective apatite RMs using isotope dilution (ID) TIMS and laser ablation (LA) ICP-MS. The two RMs, from Morocco (MRC-1) and Brazil (BRZ-1), are cm-sized and available in significant quantities. The U-Pb ID-TIMS data yield an isochron age of 153.3 ± 0.2 Ma for MRC-1. This age is consistent with laser ablation split stream ICP-MS (LASS) analyses that produce an isochron age of 152.7 ± 0.6 Ma. The weighted mean of ID-TIMS analyses for 143Nd/144Nd analyses is 0.512677 ± 3, for 147Sm/144Nd is 0.10923 ± 9, and for 87Sr/86Sr is 0.707691 ± 2. The range and mean of TIMS Sm-Nd isotopic data are reproducible by LA-ICP-MS, but laser ablation Sr data are consistently offset towards more radiogenic values. For BRZ-1 apatite, ID-TIMS U-Pb analyses are dispersed, but a subset of the data yields a coherent age intercept of 2078 ± 13 Ma. The vast majority of LASS spot transects across the apatite produce an isochron that define a younger age of 2038 ± 14 Ma. We interpret this as incorporation of cryptic, younger altered domains within BRZ-1. Discordant U-Pb spot analyses are associated with chemically distinct cracks, likely a result of fluid infiltration. The weighted means of ID-TIMS analyses of BRZ-1 yield 143Nd/144Nd = 0.510989 ± 5, 147Sm/144Nd = 0.10152 ± 8, and 87Sr/86Sr = 0.709188 ± 3. The distribution of Nd isotopic compositions of this RM measured by LA-MC-ICP-MS analyses are comparable to TIMS analyses. By contrast, 87Sr/86Sr measurements by LA-ICP-MS are inaccurate and exhibit large uncertainties, but this RM can be useful for empirically correcting in situ 87Sr/86Sr measurements. The data indicate that MRC-1 apatite may serve well as a U-Pb, Sm-Nd, and Sr RM, whereas BRZ-1 apatite has the most potential as a Sm-Nd RM. These potential RMs provide new benchmarks for in situ apatite chemical analyses and inter-laboratory calibrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.