Abstract

Autograft, allograft, and biomaterials had been developed for bone regeneration. In recent year, a tissue engineering technique has been paid much attention for next generation implant. A problem of bone tissue engineering to be solved is a development of the substrate that is suitable for cell adhesion, proliferation, and differentiation. A biomimic scaffold for tissue culture was proposed, and then a cell response on the scaffold was estimated. The scaffold composed by a calcium deficient apatite with an adsorbed serum protein was formed on a ceramic hydroxyapatite (HAp) and surface-modified titanium by a soaking in cell-culture medium supplemented with fetal bovine serum. Excellent results on cell proliferation and cell adhesion were obtained only on osteoblast-like cells (MC3T3-E1). An actin filament in narrow filopodium of the spindle-shaped MC3T3-E1 cells on the ceramic HAp had a regular course. On the other hand, ends of the actin filament of the widely spread cells on the apatite layer with serum protein were scattering. It was suggested that the scattering of the actin end showed an existence of fibronectin, and then tight adhesion would be obtained by the many focal adhesion. Accordingly, the effectiveness of the biomimic scaffold containing serum protein on cell growth was confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.