Abstract

Bone-like apatite is a promising coating of poly(ether ether ketone) (PEEK) for bone implantation. Poly(aryl ether nitrile ketone) containing phthalazinone moiety (PPENK) is a novel alternative for its easy synthesis. Here, chitosan/gelatin hybrid hydrogel coating is applied to induce the formation of apatite on the surface of PPENK substrate through biomineralization to improve its biocompatibility and osteogenic property. PPENK possessing allyl groups (PPENK-d) are synthesized and spin-coated on PPENK substrate to impart reactive groups. The hydrogel coating is prepared by the ultraviolet crosslinking of gelatin methacrylate (GelMA) and chitosan methacrylate (CSMA) on PPENK substrate. PPENK-d, GelMA, and CSMA are characterized by 1 H-NMR to confirm the designed structures. The presence of chitosan increases the chelation of calcium ions and thus induces the nucleation of apatite. The microstructural and compositional results reveal that the chitosan-containing hydrogel coating induced apatite coating yields a higher apatite quantity compared to the gelatin hydrogel coating. The apatite coatings on PPENK substrate promote the cytocompatibility and osteogenesis of MC3T3-E1 preosteoblasts in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.