Abstract

Organic polymers with ability of apatite formation in body environment are expected as novel bone substitutes having not only bone-bonding ability, i.e. bioactivity, but also mechanical performance analogous to natural bone. Several metal oxides have been found to be effective for the apatite deposition in body environment. In addition, release of calcium ions from the materials significantly enhances it. In this study, we attempted to synthesize bioactive organic-inorganic hybrids from Poly(vinyl alcohol) (PVA) by incorporation of various metal oxides and calcium salt. Silica and molybdenum oxides were selected as metal oxides. Ability of apatite formation on the hybrids was examined in vitro using simulated body fluid (SBF, Kokubo solution). Apatite deposition were observed to occur on the surfaces of PVA/silica and PVA/molybdenum oxide hybrids in SBF, when their compositions were appropriately controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.