Abstract

Vascular smooth muscle cells (VSMCs) are associated with differentiated, organized, and contractile phenotype under the effect of various types of physiological conditions those are associated with migratory, proliferative, and synthetic phenotype under the effect of various types of stimuli, which dysfunction drives many cardiovascular diseases. Abnormal cell proliferation and invasion of VSMCs are among the primary causes of hypertension. Apatinib is a small-molecule tyrosine kinase inhibitor (TKI) that highly selectively binds to and strongly inhibits VEGFR-2. Previous studies have confirmed that the TKIs can raise blood pressure through RhoA/ROCK pathway. LARG is a key gene in the RhoA/ROCK pathway and plays a critical role in the continuous vasoconstriction function because it regulates part of signal transduction in VSMCs. In this study, an in vitro experiment was conducted to observe that apatinib caused dysfunction of MOVAS cells through the RhoA/ROCK signalling pathway and Y27632, a nonspecific ROCK inhibitor, and knockout of LARG gene can improve the proliferation, antiapoptosis, oxidative stress, and mitochondrial autophagy of apatinib-induced MOVAS cells. These findings suggest that activation of the RhoA/ROCK signalling pathway could be the underlying mechanism of apatinib-induced dysfunction of MOVAS cells, while ROCK inhibitor and knockout of LARG gene have potential therapeutic value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call