Abstract

BackgroundMicroRNA-26a (miR-26a) is a key player in tumor suppression and plays important roles in glucose and lipid metabolism. However, its function in adipose tissue is not well defined. ObjectiveThe study aimed to examine the effect on fat expansion and function of miR-26a in adipose tissue. MethodsAdipose-specific miR-26a transgenic mice (Ap2-miR-26a) were firstly generated by breeding miR-26a floxed (Mir26aloxP/loxP) mice with Ap2-Cre recombinase transgenic mice. The effects of miR-26a adipose-specific overexpression on body weight, body fat composition, fat pad weight, adipocyte size, blood lipid levels, glucose metabolism, and adipogenesis were investigated in mice on a chow diet and a high fat diet. White adipose tissue browning was evaluated by energy expenditure, adipocyte morphology and browning related genes expression levels both at room temperature and after cold exposure. Gene expression was determined by Real-Time quantitative PCR and western blotting. ResultsMiR-26a was specifically overexpressed in adipose by ~4 folds. Ap2-miR-26a mice had a moderate decrease in body weight, body fat composition, epididymal white adipose (eWAT) weight and blood lipid levels, along with smaller adipocytes in eWAT. The favorable phenotype was not due to white adipose tissue browning (even after cold exposure) or adipogenesis or lipolysis. Ap2-miR-26a mice exhibited no significant metabolic phenotype under high-fat-diet feeding. ConclusionThis study suggests that adipose-specific overexpression of miR-26a could moderately reduce visceral fat pad mass and lipid levels independent of white adipose tissue browning, adipogenesis and adipose lipolysis based on the gene expression level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call