Abstract

To date, five AP-2 genes that encode AP-2α, β, γ, δ and ε have been identified in vertebrates and they have been reported to be key regulators of embryonic development. However, the role of AP-2 family members in the development of central nervous system (CNS) has not been characterized. In the present study, we systematically examined the spatiotemporal expression pattern of AP-2 genes in the developing spinal cord of mouse and chick embryos and found that AP-2α and AP-2β are specifically expressed in post-mitotic dorsal interneurons. Loss-of-function analysis using in ovo electroporation in embryonic chick spinal cord preliminarily demonstrated that cAP-2α and cAP-2β regulates dorsal Class A and Class B interneuron specification, respectively. Gain-of-function experiments further revealed that misexpression of cAP-2α, but not cAP-2β, was able to induce the ectopic generation of Class A interneurons. Together, our studies indicated that AP-2 family members, AP-2α and AP-2β, have distinct functions in the regulation of dorsal interneuron development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.