Abstract

Amyloid beta peptide (AβP) is a natural peptide, normally released into the cerebrospinal fluid (CSF), that plays a key role in Alzheimer's disease. The conversion of the peptide from a native soluble form to a non-native and often insoluble form, such as small and large aggregates, protofibrils and fibrils of AβP appears to be implicated in the pathogenesis of AD. Although the molecular mechanisms of AβP neurotoxicity are not fully understood, a large body of data suggests that the primary target of amyloid peptides is the cell membrane of neurons, that may modulate the structural and functional conversion of AβP into assemblies involved in pathological processes. In our study, we provide a systematic investigation of AβP1-42's ability to incorporate and form channel-like events in membranes of different lipid composition and focus on cholesterol and its oxidation products. We propose that cholesterol and its oxidation products can be considered neuroprotective factors because a) by favouring AβP1-42 insertion into membranes, the fibrillation/clearance balance shifts toward clearance; b) by shifting channel selectivity toward anions, the membrane potential is moved far from the threshold of membrane excitability, thus decreasing the influx of calcium into the cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call