Abstract

Expression of brain-specific phenotypes increased in all trans retinoic acid (ATRA)-induced neural differentiation of mouse P19 embryonal carcinoma cells. Among these phenotypes, expression of class IVa β-tubulin isotype (TUBB4a) was particularly enhanced in neural differentiation. Transient transfection assays employing a reporter construct found that ATRA-mediated regulatory region of the TUBB4a gene lay in the region from −83 nt to +137 nt relative to the +1 transcription start site. Site-directed mutagenesis in the AP-1 binding site at −29/−17 suggested that the AP-1 binding site was a critical region for ATRA-mediated TUBB4a expression. Chromatin immunoprecipitation experiments suggested participation of JunD and activating transcription factor-2 (ATF2) in TUBB4a expression. Additionally, exogenous induction of the dominant-negative (dn) type of JunD canceled ATRA-induced upregulation of TUBB4a, and the dn type of ATF2 suppressed even the basal activity. Further immunoblot study revealed an ATRA-mediated increase in JunD protein, while a significant amount of ATF2 protein was constantly produced. These results suggest that differentiation-mediated activation of JunD results in enhanced TUBB4a expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call