Abstract

Spin-Transfer Torque Random Access Memory (STT-RAM) has been identified as an advantageous candidate for on-chip memory technology due to its high density and ultra low leakage power. Recent research progress in Magnetic Tunneling Junction (MTJ) devices has developed Multi-Level Cell (MLC) STT-RAM to further enhance cell density. To correct the write disturbance in MLC strategy, data stored in the soft bit must be restored back immediately after the hard bit switching is completed. However, frequent restores are not only unnecessary, but also introduce a significant energy consumption overhead. In this paper, we propose an Adaptive Overwrite Scheme (AOS) which alleviates restoration overhead by intentionally overwriting selected soft bit lines based on RRD (Read Reuse Distance). Our experimental results show 54.6% reduction in soft bit restoration, delivering 10.8% decrease in overall energy consumption. Moreover, AOS promotes MLC to be a preferable L2 design alternative in terms of energy, area and latency product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.