Abstract

BackgroundAortopulmonary collaterals (APCs) are frequently found in patients with a single-ventricle (SV) circulation. However, knowledge about the clinical significance of the systemic-to-pulmonary shunt flow in patients after the modified Fontan procedure and its potential causes is limited. Accordingly, the aim of our study was to detect and quantify APC flow using cardiovascular magnetic resonance (CMR) and assess its impact on SV volume and function as well as to evaluate the role of the size of the pulmonary arteries in regard to the development of APCs.Methods60 patients (mean age 13.3 ± 6.8 years) after the Fontan procedure without patent tunnel fenestration underwent CMR as part of their routine clinical assessment that included ventricular functional analysis and flow measurements in the inferior vena cava (IVC), superior vena cava (SVC) and ascending aorta (Ao). APC flow was quantified using the systemic flow estimator: (Ao) - (IVC + SVC). Pulmonary artery index (Nakata index) was calculated as RPA + LPA area/body surface area using contrast enhanced MR angiography. The patient cohort was divided into two groups according to the median APC flow: group 1 < 0.495 l/min/m2 and group 2 > 0.495 l/min/m2.ResultsGroup 1 patients had significant smaller SV enddiastolic (71 ± 16 vs 87 ± 25 ml/m2; p=0.004) and endsystolic volumes (29 ± 11 vs 40 ± 21 ml/m2; p=0.02) whereas ejection fraction (59 ± 9 vs 56 ± 13%; p=0.38) differed not significantly. Interestingly, pulmonary artery size showed a significant inverse correlation with APC flow (r=-0.50, p=0.002).ConclusionsVolume load due to APC flow in Fontan patients affected SV dimensions, but did not result in an impairment of SV function. APC flow was related to small pulmonary artery size, suggesting that small pulmonary arteries represent a potential stimulus for the development of APCs.

Highlights

  • Aortopulmonary collaterals (APCs) are frequently found in patients with a single-ventricle circulation at different stages of palliation [1]

  • Highlighting the clinical significance of APC flow, three studies recently demonstrated that increased collateral flow before the Fontan operation was associated with longer duration of pleural drainage and prolonged recovery in the postoperative period [6,7,8]

  • The cardiovascular magnetic resonance (CMR) protocol included a stack of short-axis slices from the base of the heart to the apex using cine steady-state free precession (SSFP) with breath-hold or gradient echo (GE) sequences in free-breathing technique when patients were sedated

Read more

Summary

Introduction

Aortopulmonary collaterals (APCs) are frequently found in patients with a single-ventricle circulation at different stages of palliation [1] These vessels typically originate from the subclavian arteries or their branches and represent additional sources of pulmonary blood flow that cause a left-to-right shunt with a subsequent volume load to the single-ventricle. The aim of our study was to detect and quantify APC flow using cardiovascular magnetic resonance (CMR) and assess its impact on SV volume and function as well as to evaluate the role of the size of the pulmonary arteries in regard to the development of APCs. Methods: 60 patients (mean age 13.3 ± 6.8 years) after the Fontan procedure without patent tunnel fenestration underwent CMR as part of their routine clinical assessment that included ventricular functional analysis and flow measurements in the inferior vena cava (IVC), superior vena cava (SVC) and ascending aorta (Ao). APC flow was related to small pulmonary artery size, suggesting that small pulmonary arteries represent a potential stimulus for the development of APCs

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call