Abstract

Increased aortic pulse-wave velocity (PWV) reflects increased arterial stiffness and is a strong predictor of cardiovascular risk in chronic kidney disease (CKD). We examined functional and structural correlations among PWV, aortic calcification, and vascular remodeling in a rodent model of CKD, the Lewis polycystic kidney (LPK) rat. Hemodynamic parameters and beat-to-beat aortic PWV were recorded in urethane-anesthetized animals [12-wk-old hypertensive female LPK rats (n = 5)] before the onset of end-stage renal disease and their age- and sex-matched normotensive controls (Lewis, n = 6). Animals were euthanized, and the aorta was collected to measure calcium content by atomic absorption spectrophotometry. A separate cohort of animals (n = 5/group) were anesthetized with pentobarbitone sodium and pressure perfused with formalin, and the aorta was collected for histomorphometry, which allowed calculation of aortic wall thickness, medial cross-sectional area (MCSA), elastic modulus (EM), and wall stress (WS), size and density of smooth muscle nuclei, and relative content of lamellae, interlamellae elastin, and collagen. Mean arterial pressure (MAP) and PWV were significantly greater in the LPK compared with Lewis (72 and 33%, respectively) animals. The LPK group had 6.8-fold greater aortic calcification, 38% greater aortic MCSA, 56% greater EM/WS, 13% greater aortic wall thickness, 21% smaller smooth muscle cell area, and 20% less elastin density with no difference in collagen fiber density. These findings demonstrate vascular remodeling and increased calcification with a functional increase in PWV and therefore aortic stiffness in hypertensive LPK rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call