Abstract

A flexible aortic root is essential for natural leaflet stress distribution. It is suggested that stentless bioprosthetic valves retain the flexibility of native valves. We investigated aortic root distensibility and cross-sectional area (CSA) in stentless (Solo, n=4; Toronto SPV, n=7), stented (Mitroflow, n=8) and in native valves (n=8) in pigs. Magnetic resonance imaging was performed to assess aortic root areas. At the annular level the Solo valve had a larger CSA (2.83+/-0.26 cm(2)) than both the Mitroflow (2.24+/-0.23 cm(2)) and Toronto SPV (1.87+/-0.59 cm(2)) (P=0.003; P=0.01). At the sino-tubular junction the Mitroflow valve had a significantly larger CSA (2.96+/-0.80 cm(2)) than the Toronto SPV (2.05+/-0.47 cm(2); P=0.02). At the annular level the percentage change in area between end-diastole and end-systole was lower for the Mitroflow than for all the other valves (P=0.006). No difference was found between native and stentless valves. In conclusion, the Solo valve had a larger CSA at the annulus than both the Mitroflow and the Toronto SPV. However, the stentless valves had a smaller CSA at the sino-tubular junction than the Mitroflow. We, furthermore, found that implantation of stentless heart valves preserves aortic root distensibility at the annular level in pigs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call