Abstract

Background Aortic pulse wave velocity (PWV) is considered as the “gold standard” measurement of arterial stiffness and is commonly calculated as the ratio between the distance separating two locations along the artery and the transit time (Δt) needed for the pressure or velocity wave to cover this distance. PWV is increasingly assessed by means of cardiovascular magnetic resonance (CMR). Our goal was evaluate the efficiency of a novel method for Δt estimation, based on the principle of group delay (TT-GD method).

Highlights

  • Aortic pulse wave velocity (PWV) is considered as the “gold standard” measurement of arterial stiffness and is commonly calculated as the ratio between the distance separating two locations along the artery and the transit time (Δt) needed for the pressure or velocity wave to cover this distance

  • The TT-GD method operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component “filter”, producing the observed descending aortic waveform, so that the group delay (GD) of that filter represents the average time-delay

  • Mean Δts obtained with the three methods were comparable (TT-GD: 28.18±5.36 ms, TT-point: 27.02±5.32 ms, TT-wave: 26.93±4.41; P=0.561)

Read more

Summary

Open Access

Aortic pulse wave velocity assessment in CMR: a novel method for transit time estimation. Antonella Meloni1,2*, Heather M Zymeski, Alessia Pepe, Massimo Lombardi, John C Wood. From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. 31 January - 3 February 2013

Background
Methods
Results
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call