Abstract

BackgroundIn patients with bicuspid valve (BAV), ascending aorta (AAo) dilatation may be caused by altered flow patterns and wall shear stress (WSS). These differences may explain different aortic dilatation morphotypes. Using 4D-flow cardiovascular magnetic resonance (CMR), we aimed to analyze differences in flow patterns and regional axial and circumferential WSS maps between BAV phenotypes and their correlation with ascending aorta dilatation morphotype.MethodsOne hundred and one BAV patients (aortic diameter ≤ 45 mm, no severe valvular disease) and 20 healthy subjects were studied by 4D-flow CMR. Peak velocity, flow jet angle, flow displacement, in-plane rotational flow (IRF) and systolic flow reversal ratio (SFRR) were assessed at different levels of the AAo. Peak-systolic axial and circumferential regional WSS maps were also estimated. Unadjusted and multivariable adjusted linear regression analyses were used to identify independent correlates of aortic root or ascending dilatation. Age, sex, valve morphotype, body surface area, flow derived variables and WSS components were included in the multivariable models.ResultsThe AAo was non-dilated in 24 BAV patients and dilated in 77 (root morphotype in 11 and ascending in 66). BAV phenotype was right-left (RL-) in 78 patients and right-non-coronary (RN-) in 23. Both BAV phenotypes presented different outflow jet direction and velocity profiles that matched the location of maximum systolic axial WSS. RL-BAV velocity profiles and maximum axial WSS were homogeneously distributed right-anteriorly, however, RN-BAV showed higher variable profiles with a main proximal-posterior distribution shifting anteriorly at mid-distal AAo. Compared to controls, BAV patients presented similar WSS magnitude at proximal, mid and distal AAo (p = 0.764, 0.516 and 0.053, respectively) but lower axial and higher circumferential WSS components (p < 0.001 for both, at all aortic levels). Among BAV patients, RN-BAV presented higher IRF at all levels (p = 0.024 proximal, 0.046 mid and 0.002 distal AAo) and higher circumferential WSS at mid and distal AAo (p = 0.038 and 0.046, respectively) than RL-BAV. However, axial WSS was higher in RL-BAV compared to RN-BAV at proximal and mid AAo (p = 0.046, 0.019, respectively). Displacement and axial WSS were independently associated with the root-morphotype, and circumferential WSS and SFRR with the ascending-morphotype.ConclusionsDifferent BAV-phenotypes present different flow patterns with an anterior distribution in RL-BAV, whereas, RN-BAV patients present a predominant posterior outflow jet at the sinotubular junction that shifts to anterior or right anterior in mid and distal AAo. Thus, RL-BAV patients present a higher axial WSS at the aortic root while RN-BAV present a higher circumferential WSS in mid and distal AAo. These results may explain different AAo dilatation morphotypes in the BAV population.

Highlights

  • In patients with bicuspid valve (BAV), ascending aorta (AAo) dilatation may be caused by altered flow patterns and wall shear stress (WSS)

  • Aortic diameters were larger in BAV compared to controls, no statisticallysignificant differences were observed

  • The main findings of our study were that: 1) RL-BAV patients present a sustained flow towards the anterior and right-anterior aortic walls, whereas, RN-BAV present a predominantly posterior output flow that shifts towards the right and right-anterior walls in the mid and distal AAo inducing an increase in the in-plane rotational flow (IRF)

Read more

Summary

Introduction

In patients with bicuspid valve (BAV), ascending aorta (AAo) dilatation may be caused by altered flow patterns and wall shear stress (WSS). These differences may explain different aortic dilatation morphotypes. Using 4Dflow cardiovascular magnetic resonance (CMR), we aimed to analyze differences in flow patterns and regional axial and circumferential WSS maps between BAV phenotypes and their correlation with ascending aorta dilatation morphotype. The most common BAV fusion phenotype involves the right and left cusps (RL-BAV) and is associated with dilatation of the tubular ascending aorta (AAo) and aortic root primarily along the convexity of the aorta. While the fusion of the right and non-coronary cusps (RN-BAV) induces arch dilatation with involvement of the tubular ascending aorta, with relative sparing of the root [3]. Controversy exists regarding the influence of hemodynamic [7, 8] and genetic factors in aortic dilatation [9], different studies have provided significant evidence that altered outflow pattern is related to aortic morphology [7, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call