Abstract

Arterial baroreceptors are mechanical sensors that detect blood pressure changes. It has long been suggested that the two arterial baroreceptors, aortic and carotid baroreceptors, have different pressure sensitivities. However, there is no consensus as to which of the arterial baroreceptors are more sensitive to changes in blood pressure. In the present study, we employed independent methods to compare the pressure sensitivity of the two arterial baroreceptors. Firstly, pressure-activated action potential firing was measured by whole-cell current clamp with a high-speed pressure clamp system in primary cultured baroreceptor neurons. The results show that aortic depressor neurons possessed a higher percentage of mechano-sensitive neurons. Furthermore, aortic baroreceptor neurons show a lower pressure threshold than that of carotid baroreceptor neurons. Secondly, uniaxial stretching of baroreceptor neurons, that mimics the forces exerted on blood vessels, elicited a larger increase in intracellular Ca2+ rise in aortic baroreceptor neurons than in carotid baroreceptor neurons. Thirdly, the pressure-induced action potential firing in the aortic depressor nerve recorded in vivo was also higher. The present study therefore provides for a basic physiological understanding on the pressure sensitivity of the two baroreceptor neurons and suggests that aortic baroreceptors have a higher pressure sensitivity than carotid baroreceptors.

Highlights

  • Arterial baroreceptors serve as the frontline sensors to detect blood pressure changes in the blood stream

  • The results showed that 45% of aortic baroreceptor neurons fired continuous action potentials in response to the depolarizing electrical current (Table 1A)

  • The pressure threshold that could initiate action potential firings was found to be lower in the aortic baroreceptor neurons than in the carotid baroreceptor neurons

Read more

Summary

Introduction

Arterial baroreceptors serve as the frontline sensors to detect blood pressure changes in the blood stream. Changes in blood pressure stimulate the mechanosensitive nerve endings that are localized in the arterial walls. The mechanical force is transduced into electrical signals at the nerve terminals, resulting in pressure-dependent action potential firings in baroreceptor neurons. The nerve signals propagate to the cardiovascular control center in the brainstem for baroreflex regulation of blood pressure (Levy MN, 2007). Supra-medullary structures, including midbrain cuneiform nucleus and ventral medial prefrontal cortex, have an inhibitory role in baroreflex regulation (Verberne et al, 1997). The aortic baroreceptors detect blood pressure in the aorta. The cell bodies (soma) of the aortic baroreceptors

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.