Abstract

BackgroundIt was our purpose to identify vulnerable plaques in the thoracic aorta using 3D multi-contrast CMR and estimate the risk of cerebral embolization using 4D flow CMR in cryptogenic stroke patients and controls.MethodsOne hundred patients (40 with cryptogenic stroke, 60 ophthalmologic controls matched for age, sex and presence of hypertension) underwent a novel 3D multi-contrast (T1w, T2w, PDw) CMR protocol at 3 Tesla for plaque detection and characterization within the thoracic aorta, which was combined with 4D flow CMR for mapping potential embolization pathways. Plaque morphology was assessed in consensus reading by two investigators and classified according to the modified American-Heart-Association (AHA) classification of atherosclerotic plaques.ResultsIn the thoracic aorta, plaques <4 mm thickness were found in a similar number of stroke patients and controls [23 (57.5%) versus 33 (55.0%); p = 0.81]. However, plaques ≥4 mm were more frequent in stroke patients [22 (55.0%) versus 10 (16.7%); p < 0.001]. Of those patients with plaques ≥4 mm, seven (17.5%) stroke patients and two (3.3%) controls (p < 0.001) had potentially vulnerable AHA type VI plaques. Six stroke patients with vulnerable AHA type VI plaques ≥4 mm had potential embolization pathways connecting the plaque, located in the aortic arch (n = 3) and proximal descending aorta (n = 3), with the individual territory of stroke, which made them the most likely source of stroke in those patients.ConclusionsOur findings underline the significance of ≥4 mm thick and vulnerable plaques in the aortic arch and descending aorta as a relevant etiology of stroke.Clinical trial registrationUnique identifier: DRKS00006234; date of registration: 11/06/2014

Highlights

  • It was our purpose to identify vulnerable plaques in the thoracic aorta using 3D multi-contrast CMR and estimate the risk of cerebral embolization using 4D flow CMR in cryptogenic stroke patients and controls

  • Atherosclerosis of the aorta is regarded as a source of embolic stroke, if complex plaques (≥4 mm thick, ulcerated, or containing mobile thrombi) are detected in the ascending aorta and the aortic arch by transesophageal echocardiography (TEE) [1]

  • We included only cryptogenic stroke patients in order to systematically evaluate the prevalence of plaques of the aortic arch and descending aorta and of potential embolization pathways that constitute a likely source of cerebral embolism

Read more

Summary

Introduction

It was our purpose to identify vulnerable plaques in the thoracic aorta using 3D multi-contrast CMR and estimate the risk of cerebral embolization using 4D flow CMR in cryptogenic stroke patients and controls. Wehrum et al Journal of Cardiovascular Magnetic Resonance (2017) 19:67 Their embolic potential arises from the physiological end diastolic retrograde blood flow which is able to transport plaque material back into the proximal aortic arch and to the brain- supplying arteries [4,5,6]. It was our aim to detect atheroma ( ≥4 mm thick and vulnerable thoracic plaques) among patients with cryptogenic ischemic stroke and ophthalmologic controls using a novel 3D multi-contrast CMR protocol [9]. In order to investigate if embolization pathways to the brain-supplying arteries originating from such atheroma are more frequent in stroke patients and to assess the role of this mechanism for ischemic stroke, we visualized embolization pathways [10] with 4D flow CMR

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.