Abstract

BackgroundIn ascending thoracic aortic aneurysm risk stratification, aortic area/height ratio is a reasonable alternative to maximum diameter. Biomechanically, aortic dissection may be initiated by wall stress exceeding wall strength. Our objective was to evaluate the association between aortic area/height and peak aneurysm wall stresses in relation to valve morphology and 3-year all-cause mortality. MethodsFinite element analysis was performed on 270 ascending thoracic aortic aneurysms (46 associated with bicuspid and 224 with tricuspid aortic valves) in veterans. Three-dimensional aneurysm geometries were reconstructed from computed tomography and models developed accounting for prestress geometries. Fiber-embedded hyperelastic material model was applied to obtain aneurysm wall stresses during systole. Correlations of aortic area/height ratio and peak wall stresses were compared across valve types. Area/height ratio was evaluated across peak wall stress thresholds obtained from proportional hazards models of 3-year all-cause mortality, with aortic repair treated as a competing risk. ResultsAortic area/height 10 cm2/m or greater coincided with 23/34 (68%) 5.0 to 5.4 cm and 20/24 (83%) 5.5 cm or greater aneurysms. Area/height correlated weakly with peak aneurysm stresses: for tricuspid valves, r = 0.22 circumferentially and r = 0.24 longitudinally; and for bicuspid valves, r = 0.42 circumferentially and r = 0.14 longitudinally. Age and peak longitudinal stress, but not area/height, were independent predictors of all-cause mortality (age: hazard ratio, 2.20 per 9-year increase, P = .013; peak longitudinal stress: hazard ratio, 1.78 per 73-kPa increase, P = .035). ConclusionsArea/height was more predictive of high circumferential stresses in bicuspid than tricuspid valve aneurysms, but similarly less predictive of high longitudinal stresses in both valve types. Peak longitudinal stress, not area/height, independently predicted all-cause mortality. Video Abstract [Display omitted]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.