Abstract

We present our computational methods for and results from aorta flow analysis and heart valve flow and structure analysis. In flow analysis, the core method is the space–time Variational Multiscale (ST-VMS) method. The other key methods are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). The ST framework, in a general context, provides higher-order accuracy. The VMS feature of the ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flows in the aorta and heart valve. The moving-mesh feature of the ST framework enables high-resolution computation near the valve leaflets. The ST-SI connects the sectors of meshes containing the leaflets, enabling a more effective mesh moving. The ST-TC enables moving-mesh computation even with the TC created by the contact between the leaflets. It deals with the contact while maintaining high-resolution representation near the leaflets. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the leaflet surfaces. It also enables dealing with leaflet–leaflet contact location change and contact sliding. The ST-IGA provides smoother representation of aorta and valve surfaces and increased accuracy in the flow solution. With the integration of the ST-IGA with the ST-SI and ST-TC, the element density in the narrow spaces near the contact areas is kept at a reasonable level. In structure analysis, we use a Kirchhoff–Love shell model, where we take the stretch in the third direction into account in calculating the curvature term. The computations presented demonstrate the scope and effectiveness of the methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.