Abstract
Peripheral hyperinsulinaemia usually found in conventionally treated Type 1 (insulin-dependent) diabetic patients may have deleterious metabolic effects. We have used a hyperinsulinaemic model to examine intermediary metabolism in two key peripheral tissues, aorta and muscle. Nine pigs were immunized with crystalline insulin. Subsequently, they showed an insulin-binding capacity of 86.2 +/- 25.0 pmol/l and fasting total serum insulin of 3.9 +/- 3.1 nmol/l (control range 0.034-0.072 nmol/l), impaired glucose tolerance after oral glucose tolerance testing, significantly elevated levels of peripheral venous serum free insulin and C-peptide, and increased mean post-prandial free insulin/glucose ratios. The immunized pigs showed marked elevation of aorta and muscle triglycerides compared with control pigs (n = 15) but similar levels of non-esterified fatty acids. The glucose-6-phosphate-dehydrogenase, malic enzyme and 3-hydroxyacyl-CoA-dehydrogenase activities were all increased significantly (by 50%-300%) in both aorta and muscle. Phosphofructokinase was decreased in both tissues. Hexokinase was increased in muscle alone whereas pyruvate kinase was significantly decreased in aorta. Glyceraldehyde-3-phosphate dehydrogenase activity was not significantly different in aorta and muscle. Thus in insulin immunized pigs with normal beta-cell function and pronounced peripheral hyperinsulinaemia there was increased peripheral lipogenic activity. These findings have potentially important implications with regard to macrovascular disease in diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.