Abstract

The unforeseen mobile data explosion poses a major challenge to the performance of today's cellular networks, and is in urgent need of novel solutions to handle such voluminous mobile data. Obviously, data offloading through third-party WiFi access points (APs) can effectively alleviate the data load in the cellular networks with a low operational and capital expenditure. In this paper, we propose and analyze an attractor-aware offloading ratio selection (AORS) algorithm, which can adaptive select an optimum offloading ratio based on attractor selection for the current networks environment. In the proposed algorithm, the throughput of AP and the cellular load corresponding to the coverage area of the AP, are mapped into the cell activity, which is the reflector of the current network environment. When the current attractor activity is low, the network is dominated by the noise. Then, the noise triggers the controller to select adaptive attractor for each users, the optimal offloading ratio $$\phi $$?, to adapt to the dynamic network environment. Hence, according to the offloading ratio $$\phi $$?, the part of the cellular traffic will be transmitted via WiFi networks. Through simulation, we show that the proposed AORS algorithm outperforms the existing ones with 42 % higher heterogeneous network throughput in a dense traffic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.