Abstract

ABSTRACT We propose a sequential, anytime-valid method to test the conditional independence of a response Y and a predictor X given a random vector Z. The proposed test is based on e-statistics and test martingales, which generalize likelihood ratios and allow valid inference at arbitrary stopping times. In accordance with the recently introduced model-X setting, our test depends on the availability of the conditional distribution of X given Z, or at least a sufficiently sharp approximation thereof. Within this setting, we derive a general method for constructing e-statistics for testing conditional independence, show that it leads to growth-rate optimal e-statistics for simple alternatives, and prove that our method yields tests with asymptotic power one in the special case of a logistic regression model. A simulation study is done to demonstrate that the approach is competitive in terms of power when compared to established sequential and nonsequential testing methods, and robust with respect to violations of the model-X assumption. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.