Abstract

This paper proposes a novel anytime fuzzy supervisory expert system for online signal processing. We demonstrate via simulations that this system is able to follow slowly varying signals and heal the signal in case of missing input data. In the presence of contaminating noise, the supervisory system performs the automatic wavelet shrinkage procedure selection, which ensures to pick the proper algorithm that is the most efficient in the given scenario. The necessary level of wavelet decomposition is determined online by the fuzzy supervisory expert. The system applies orthogonal wavelet functions in order to reduce significantly the processing time of reconstruction. The paper also shows how the online threshold estimator selection module ensures the highest denoising efficiency by selecting the most suitable algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.