Abstract

We show that the “geometric models of matter” approach proposed by the first author can be used to construct models of anyon quasiparticles with fractional quantum numbers, using 4-dimensional edge-cone orbifold geometries with orbifold singularities along embedded 2-dimensional surfaces. The anyon states arise through the braid representation of surface braids wrapped around the orbifold singularities, coming from multisections of the orbifold normal bundle of the embedded surface. We show that the resulting braid representations can give rise to a universal quantum computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.