Abstract

Kitaev's quantum double models, including the toric code, are canonical examples of quantum topological models on a 2D spin lattice. Their Hamiltonian defines the groundspace by imposing an energy penalty to any nontrivial flux or charge, but does not distinguish among those. We generalize this construction by introducing a novel family of Hamiltonians made of commuting four-body projectors that provide an intricate splitting of the Hilbert space by discriminating among non-trivial charges and fluxes. Our construction highlights that anyons are not in one-to-one correspondence with energy eigenspaces, a feature already present in Kitaev's construction. This discrepancy is due to the presence of local degrees of freedom in addition to topological ones on a lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.