Abstract

Parafermions are emergent quasi-particles which generalize Majorana fermions and possess intriguing anyonic properties. The theoretical investigation of effective models hosting them is gaining considerable importance in view of present-day condensed-matter realizations where they have been predicted to appear. Here we study the simplest number-conserving model of particle-like Fock parafermions, namely a one-dimensional tight-binding model. By means of numerical simulations based on exact diagonalization and on the density-matrix renormalization group, we prove that this quadratic model is nonintegrable and displays bound states in the spectrum, due to its peculiar anyonic properties. Moreover, we discuss its many-body physics, characterizing anyonic correlation functions and discussing the underlying Luttinger-liquid theory at low energies. In the case when Fock parafermions behave as fractionalized fermions, we are able to unveil interesting similarities with two counter-propagating edge modes of two neighboring Laughlin states at filling 1/3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call