Abstract

We developed an exoskeleton for neurorehabilitation that covered all relevant degrees of freedom of the human arm while providing enough range of motion, speed, strength, and haptic-rendering function for therapy of severely affected (e.g., mobilization) and mildly affected patients (e.g., strength and speed). The ANYexo 2.0, uniting these capabilities, could be the vanguard for highly versatile therapeutic robotics applicable to a broad target group and an extensive range of exercises. Thereby, the practical adoption of these devices in clinics will be fostered. The unique kinematic structure of the robot and the bio-inspired controlled shoulder coupling allowed training for most activities of daily living. We demonstrated this capability with 15 sample activities, including interaction with real objects and the own body with the robot in transparent mode. The robot's joints can reach <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$200 \%$</tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$398 \%$</tex-math></inline-formula> , and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$354 \%$</tex-math></inline-formula> of the speed required during activities of daily living at the shoulder, elbow, and wrist, respectively. Further, the robot can provide isometric strength training. We present a detailed analysis of the kinematic properties and propose algorithms for intuitive control implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call