Abstract

We have performed an XMM-Newton imaging and spectroscopic study of supernova remnant (SNR) W28, a prototype mixed-morphology or thermal composite SNR, believed to be interacting with a molecular cloud. The observed hot X-ray emitting plasma is characterized by low metal abundances, showing no evidence of ejecta. The X-rays arising from the deformed northeast shell consist of a thermal component with a temperature of $\sim0.3$ keV plus a hard component of either thermal (temperature $\sim 0.6$ keV) or non-thermal (photon index $=0.9$-2.4) origin. The X-ray emission in the SNR interior is blobby and the corresponding spectra are best described as the emission from a cold ($kT\sim0.4$ keV) plasma in non-equilibrium ionization with an ionization timescale of $\sim4.3\times 10^{11}$ cm$^{-3}$ s plus a hot ($kT \sim 0.8$ keV) gas in collisional ionization equilibrium. Applying the two-temperature model to the smaller central regions, we find non-uniform interstellar absorption, temperature and density distribution, which indicates that the remnant is evolving in a non-uniform environment with denser material in the east and north. The cloudlet evaporation mechanism can essentially explain the properties of the X-ray emission in the center and thermal conduction may also play a role for length scales comparable to the remnant radius. A recombining plasma model with an electron temperature of $\sim 0.6$ keV is also feasible for describing the hot central gas with the recombination age of the gas estimated at $\sim2.9\times 10^4$ yr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.