Abstract

Antibacterial cellulose fibers modified with silver nanoparticles were obtained. Silver nanoparticles were enclosed into cellulose fibers using N-methylomorpholine-N-oxide (NMMO) as a direct cellulose solvent as well as the main reducing system of nanoparticles. Silver nanoparticles were generated directly in NMMO as a product of AgNO3 reduction of silver ions. The basic purpose of the research was to examine of the influence of reaction conditions of silver nanoparticles on their size, shape and distribution in the polymer matrix of fibers and consequently on the colour of obtained fibers, as well as on their bioactive activity. The characteristics of the obtained silver nanoparticles were studied using energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and dynamic light scattering technique (DLS). Taking into account the potential medical applications of the obtained fibers, their antibacterial activity and cytotoxicity of silver nanoparticles enclosed in fibers were examined in the human (HeLa) and mouse cells (L929).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.