Abstract

60% of the world’s ecosystems are not used in a sustainable way. Modern agriculture is blamed for declining soil carbon and biodiversity. Climate change, habitat fragmentation and other obstacles impede the movement of many animal species, and distribution changes are projected to continue. Therefore, we need alternative management strategies. The colony organisation of social insects, especially of ants, is seen as a model to design an improved agricultural management, because ants are very experienced agriculturists. Ants represent half of the global insect biomass. Their individuals work like a super organism. This article focuses on harvester and leaf cutter ants by considering Lasius species. It reviews the organisation structure of social ant communities. Harvester and leaf cutter ants represent a high percentage of the worldwide ant societies. They collect plant saps with carbon nitrogen (C/N) ratios of about 40 for their own nourishment and leaf fragments with C/N ratios of about 100 for fungi gardens and brood nourishment. They sustain huge numbers of individuals with their low N-based organic imports and their colony commensalisms enable them to convert these polymers into lower molecular, partly volatile compounds, adenosinetriphosphate (ATP), and heat. Digging improves water infiltration, drainage and soil aeration. Ants maintain fungi as a food source for the scleroproteinous brood, carry out food preservation, infection control and waste management, and construct with endurance new nests and rebuild them after damage. All these activities move the nest sites far away from the thermodynamic equilibrium. Physical, chemical and biological gradients emerge and the growing populations, together with nest-penetratingmycorrhized plant roots, absorb the released nutrients and form biomass by lowering energy flows into potentially strong consumer- resource interactions or runaway consumptions. The plant material import of leaf cutter ants, rich in carbon but low in proteins, amounts to 85–470 kg dry weight per year. It keeps the electron donor/acceptor ratio in favour of the electron donor so that denitrifiers can reduce nitrate predominantly to N2. Ants living in highly N-polluted areas bind the pollutant in the cuticle. In their low N-input environments harvester, leaf cutter and honeydew-sucking ants furnish the N demand of adult ants with the help of N2-fixing bacteria. The low N-input management of harvester, leaf cutter and honeydew-sucking ants is therefore a resourceful concept for approaching a highly productive agriculture by avoiding soil carbon decline and N2O emissions increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.