Abstract
In this paper, Antlion algorithm optimized Fuzzy PID supervised on-line Recurrent Fuzzy Neural Network based controller is proposed for the speed control of Brushless DC motor. Learning parameters of the supervised on-line recurrent fuzzy neural network controller, i.e., learning rate (η), dynamic factor (α), and number nodes (Ni) are optimized using Genetic algorithm, Particle Swarm optimization, Ant colony optimization, Bat algorithm, and Antlion algorithm. The proposed controller is tested with different operating conditions of the Brushless DC motor, such as varying load conditions and varying set speed conditions. The time domain specifications such as rise time, overshoot, undershoot, settling time, recovery time, and steady state error and also integral performance indices such as root mean square error, integral of absolute error, integral of squared error, and integral of time multiplied absolute error are measured and compared for above optimized controller. Simulation results show Antlion algorithm optimized Fuzzy PID supervised on-line recurrent fuzzy neural network based controller has proved to be superior than other considered controllers in all aspects. In addition, the experimental verification of proposed control system is presented to test the effectiveness of the proposed controller with different operating conditions of the Brushless DC motor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.